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INTRODUCTION

There is an ever increasing need to solve problems of greater complexity

and a corresponding need for reliable and robust software tools to accurately

and efficiently describe the phenomena. Adaptive techniques are good

candidates for providing the computational methods and codes necessary to

solve some of these difficult problems. Two popular adaptive techniques are:

(1) moving mesh methods, where a grid of a fixed number of finite difference

cells or finite elements is moved in order to follow and resolve local

nonuniformities in the solution, and (2) local refinement methods, where

uniform fine grids are added to coarser grids in regions Vnere the solution is

not adequately resolved. A representative sample of both types of methods is

contained in Babuska, Chandra, and Flaherty (ref 1). Recently, Adjerid and

Flaherty (ref 2) developed a finite element method that combines mesh moving

and refinement.

Herein, we discuss a local refinement finite element procedure for

finding numerical solutions of M-dimensional vector systems of partial

differential equations having the form

Lu :M ut + f(x,t,u,ux) - [D(x,t,u,ux]x - 0 , a < x < b, t > 0 (1)

subject to the initial conditions

u(xO) - uO(x) , a x b (2)

and appropriate boundary conditions so that the problem has a well-posed

solution.

1Babuska, I., Chandra, J., and Flaherty, J. E. (eds.), Adative Comeutational
Methods for Partial Differential Equations, SIAM, Philadelphia, 1983.

2Adjerid, S. and Flaherty, J. E., "A Moving Finite Element Method for Time
Dependent Partial Differential Equations with Error Estimation and
Refinement," to appear in SIAM J. Numer. Anal., 1985.
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We discretize Eqs. (1) and (2) for a time step using a finite element-

Galerkin procedure with piecewise bilinear approximations on a rectangular

space-time net. At the end of each time step, we estimate the local

discretization error, add finer subgrids of space-time elements in regions of

high error, and recursively solve the problem again in these regions. The

process terminates when the error estimate on each grid is less than a

prescribed tolerance. The original coarse space-time grid is then carried

forward for the next time step and the strategy is repeated. Our algorithm is

discussed further in Flaherty and Moore (ref 3) and some of this discussion is

repeated in the following section.

Berger (ref 4) used a similar local refinement procedure to solve one-

and two-dimensional hyperbolic systems. She used explicit finite difference

schemes to discretize the partial differential equations, while we use

implicit finite element techniques since we are primarily interested in

parabolic problems.

In addition to the discretization technique, the major numerical

questions that must be answered as part of the development of a local

refinement code are (1) the estimation of the discretization error, and (2)

the appropriate initial and boundary conditions to apply at coarse-fine mesh

interfaces. Of course computer science questions, such as which language to

3Flaherty, J. E. and Moore, P. K., "An Adaptive Local Refinement Finite
Element Method for Parabolic Partial Differential Equations," Proceedings of
the International Conference on Accuracy and Estimates and Adaptive
Refinements in Finite Element Computations, Technical University of Lisbon,
Lisbon, Vol. 2, 1984, pp. 139-152.

4Berger, M. J., "Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations," Report No. STAN-CS-82-924, Department of Computer Science,
Stanford University, 1982.
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use to describe and implement the various algorithms and what data structures

to use to represent and store the grids and solutions, must also be answered.

Our work in all of these areas is still far from complete, and herein we only

discuss our progress and thoughts on error estimation techniques, data

structures, and interface conditions (see the following section). We also

present the results of three examples that illustrate our method and some

preliminary conclusions and future plans.

FINITE ELEMENT ALGORITHM

We discretize Eq. (1) on a strip a < x < 8, p < t < q using a finite

element-Galerkin method with a uniform grid of N rectangular elements of size

(0-a)/N by (q-p). We refer to this grid as R(a,O,p,q,N,f,s), where f and s

are pointers to the father and son grids discussed later. Each grid uses

records to store the appropriate information.

We generate the discrete system on R(c,O,p,q,N,f,s) in the usual manner;

thus, we approximate u by U(xt) and select test functions V(x,t), where U and

V are elements of a space of C O bilinear polynomials with respect to the grid

R. We then take the inner produce of Eq. (1) and V, replace u by U, and

integrate any diffusive terms by parts to obtain

f [VTUt + VTf(xtUUx) + VTD(xtU)Ux]dxdt
R x

fq VDxUU B
- VT(xtU)UxI dt - 0 (3)

p Q

Equation (3) must vanish for all bilinear functions V on the grid R. The

integrals are approximated using a four-point Gauss quadrature rule and the

resulting nonlinear system is solved by Newton iteration (see, for example

3
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Reference 5 for additional details). Appropriate initial and boundary

conditions for Eq. (3) are discussed later in this section.

We describe our local refinement procedure for solving Eqs. (1) and (2)

for one time step (t0,t') on a coarse grid with NO elements, i.e., on

R(a,b,t 0,tlN 0 ,O,s) (where the pointer f - 0 signifies that this grid has no

father). To solve this problem, we simply call the procedure "locref" with

the arguments R(a,b,t0,t1 ,N0 ,O,s), tol, tsub for each coarse grid time

interval. A pseudo-PASCAL description of the procedure "locref" is shown in

Figure 1.

PROCEDURE locref (R(a,$,p,q,N,f,s), tol, tsub)
BEGIN

Solve the finite element equations (Eq. (3)) on R(a,B,p,q,N,f,s);
Estimate the error on R(a,$,p,q,N,f,s);
IF error > tol, THEN

BEGIN
calculate where error > tol and return the son grids;
FOR j :- I TO tsub DO

FOR i :- 1 TO number of sons DO
BEGIN

P[J] := p + (j-1)*(q-p)/tsub;
q[j] " p[j] + (q-p)/tsub;
locref (R(ac[i],0[i],p[j],q[j],N[i],

R(aB,p,qN,f,s),s[i] ,tol,tsub)
END

END
END;

Figure 1. Algorithm for local refinement solution of Eqs. (I) and (2) on
R(a,8,p,q,N,f,s) with an error tolerance of tol and dividing the
local time step by tsub each time the error test is not
satisfied.

The recursive algorithm locref sets up a tree structure of grids with

R(a,b,t0 ,t1 ,N0 ,O,s) being the root node and with the solution being generated

5Davis, S. F. and Flaherty, J. E., "An Adaptive Finite Element for Initial-
Boundary Value Problems for Partial Differential Equations," SIAM J. Sci.
Stat. Comput., Vol. 3, 1982, pp. 6-27.

4
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by a preorder traversal of the tree at each local time step. For example, if

the root grid is refined to given two subgrids and the time step is halved,

the problem is solved on the first subgrid on its first time step, followed by

the second subgrid on the same time step. This procedure is repeated for the

second time step. The error is estimated by Richardson extrapolation, i.e.,

the space and time steps are halved and the problem is solved again on this

new grid. The two solutions that are obtained at each original grid point are

used to generate an error estimate. If this pointwise estimate exceeds the

tolerance "tol", finer grids are added as leaf nodes to the tree. This

procedure is similar to one used by Berger (ref 4); however, there are more

economical error estimation strategies (see, for example, Bieterman and

Babuska (refs 6,7)) which we are currently investigating.

In order to solve the finite element system, Eq. (3), we need to supply

initial and boundary conditions. On any grid with p = 0, a = a, or S = b,

these can be obtained from the initial condition, Eq. (2), or prescribed

boundary conditions. However, artificial initial and boundary conditions must

be created at all other coarse-fine mesh interfaces. This is a difficult and

crucial problem that is discussed for explicit finite difference methods by

4Berger, M. J., "Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations," Report No. STAN-CS-82-924, Department of Computer Science,
Stanford University, 1982.

6Bieterman, M. and Babuska, I., "The Finite Element Method for Parabolic
Equations, I. A Posteriori Estimation," Numer. Math., Vol. 40, 1982, pp.
339-371.

7Bieterman, M. and Babuska, I., "The Finite Element Method for Parabolic
Equations, II. A Posteriori Error Estimation and Adaptive Approach," Numer.
Math., Vol. 40, 1982, pp. 373-406.
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Berger (ref s 4,8); however, it is largely unanswered for finite element

applications. Instabilities or incorrect solutions (see Example 1 in the

following section) can result if inappropriate conditions are specified.

For initial conditions, two strategies immediately come to mind: (1)

saving all fine grid data for propagation in time, or (2) interpolating the

best coarse grid data to finer grids. We consider a blend of the two

strategies which consists of saving the fine grid data down to a given level A

in the tree and subsequently interpolating for finer grids. Each grid in the

first X levels either has a linked list of the initial data directly

associated with it or uses an initial data list of an ancestor grid. To find

the value of the solution at some new initial point, the coordinate of that

point is sequentially compared to values in the linked list until an interval

containing the point is found so that interpolation can be used. This is

costly and we are investigating more efficient procedures that use the natural

ordering that already exist. We used either piecewise linear interpolation

or piecewise parabolic interpolation with shape preserving splines developed

by McLaughlin (ref 9). For each grid in the first X levels of the tree, a

linked list is created to store the initial data. We are studying several

alternative ways of determining a proper value for X.

4Berger, M. 3., "Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations," Report No. STAN-CS-82-924, Department of Computer Science,
Stanford University, 1982.

8Berger, M. J., "Stability of Interfaces with Mesh Refinement," Report No.
83-42, Institute for Computer Applications In Science and Engineering, NASA
Langley Research Center, Hampton, 1983.

9McLaughlin, H. W., "Shape Preserving Planar Interpolation: An Algorithm,"
IEEE Computer Graphics and Applics., Vol. 3, 1983, pp. 58-67.
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At the present time, we prescribe internal Dirichlet boundary conditions

by linearly interpolating from coarse to finer grids. A buffer zone of two

elements is added to each end of regions of high error that do not intersect

the boundaries x - a and b. If two buffer zones overlap or are separated from

one another by one element, the two grids are joined. Similarly, if the

buffer is only one element away from either a or b, that element is added to

the grid.

N'MERICAL EXAMPLES

An experimental code based on the algorithms in the previous section has

been written in FORTRAN-77. We are testing it on several examples, some of

these follow and others are presented in Reference 3. All results were

computed in double precision on an IBM 3081D computer.

Example I

In order to illustrate the importance of adequately resolving initial

conditions at each time step, we solve the linear hyperbolic initial value

problem

ut + uxM 0

i(/2)(cos(20 w(x-0.45)-l) , 0.35 < x < 0.75

0) , otherwise

We solve this problem for one coarse time step of At = 0.05, 10 elements on 0

< x < 1, tol - 0.01. For small enough times, the exact solution is u0(x-t).

3Flaherty, J. E. and Moore, P. K., "An Adaptive Local Refinement Finite
Element Method for Parabolic Partial Differential Equations," Proceedings of
the International Conference on Accuracy and Estimates and Adaptive
Refinements in Finite Element Computations, Technical University of Lisbon,
Lisbon, Vol. 2, 1984, pp. 139-152.

7



If initial conditions are interpolated from the coarse to the fine grid, the

oscillations are missed and an incorrect solution is computed, possibly

without a user realizing that there is anything wrong. However, saving

initial values for the first eight levels of the tree of grids calculates the

correct solution to the prescribed accuracy. The incorrect and correct

solutions are shown at t - 0.05 in Figure 2.

Example 2

We solve the following problem for Burgers' equation:

Ut + uux - duxx , 0 < x < 1 , 0 < t < 1

u(x,O) = sin ix ,0 < x < I

u(Ot) - u(l,t) - 0 , t > 0

We choose d = 0.00003, a coarse grid of 10 elements and At - 0.1, and

piecewise parabolic approximations for the initial conditions with X - 6. It

is well known that the solution of this problem is a "pulse" that steepens as

it travels to the right until it forms a shock layer at x - 1. After a time

of 0(1/d) the pulse dissipates and the solution decays to zero. We solve this

problem for tol - 0.01 and 0.001 and show the solutions at t = 0.4 in Figure

3. The solution with the cruder tolerance is exhibiting some oscillations

that are within our bounds. These, however, are not visible when the finer

tolerance is used to solve the problem.

Example 3

We solve the model combustion problem

ut + ux - 2eu - uxx , 0 < x < 1 , 0 < t < 1

u(x,O) = 0 , u(O,t) - 0 , Ux(l,t) - 0

'. 8
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The exponential nonlinearity is typical in combustion problems having

Arrhenius chemical kinetics. However, in this case the solution develops a

"hot spot" at x - 1 and becomes infinite when t is approximately 0.85. We

S choose a coarse grid of 20 elemients and At - 0.05, tol - 0.001, and X -6. In

Figure 4 we show the computed solution U(x,t) as a function of x for t -0.05,

0.06, and 0.08, and in Figure 5 we show the mesh that was used to solve the

problem. lie see that the mesh is initially concentrated in the region near x

- 0 where the curvature of the solution is largest. As time progresses and

the curvature diminishes, excessive refinement is not necessary. Finally, as

* the solution begins to "blow-up" our algorithm generates a fine mesh only in

the region near x - 1.

DISCUSSIONS AND CONCLUSIONS

We have briefly described an adaptive local refinement algorithm for

solving time dependent partial differential equations. Even though this is

-. very much a working algorithm and not a production code, we are very

encouraged by the preliminary results. We are investigating several possible

ways of improving the efficiency and robustness of our algorithm. These

include adding higher order polynomial finite element approximations,

adaptively changing the number of elements that are carried forward in the

coarse grid at each coarse time step, selecting the appropriate buffer

length, adaptively determining the optimal number of levels of initial

conditions at coarse-fine interfaces, and applying the best boundary

conditions to apply at internal boundaries. We are encouraged by the

9
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performance of McLaughlin's (ref 9) shape preserving parabolic splines;5%

however, the entire area of interpolating from coarse to fine grids needs

further study. We are also developing non-Dirichlet "natural" boundary

conditions to use at coarse-fine mesh interfaces.

Finally, we are very interested in combining the moving mesh strategy of,

for example, References 5 and 10 with the present local refinement strategy

and extending our methods to two and three dimensions.

5Davis, S. F. and Flaherty, J. E., "An Adaptive Finite Element for Initial-
Boundary Value Problems for Partial Differential Equations," SIAM J. Sci.
Stat. Comput., Vol. 3, 1982, pp. 6-27.

9McLaughlin, H. W., "Shape Preserving Planar Interpolation: An Algorithm,"
IEEE Computer Graphics and Applies., Vol. 3, 1983, pp. 58-67.

1UFlaherty, J. E., Coyle, J. M., Ludwig, R., and Davis, S. F., "Adaptive

Finite Element Methods for Parabolic Partial Differential Equations," in
Adaptive Computational Methods for Partial Differential Equations, Babuska,
I., Chandra, J., and Flaherty, J. E. (eds.), SIAM, Philadelphia, 1983.

10
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US ARMY AMCCOH COMMANDER
ATTN: SMCAR-LC 1 US ARMY TANK-AUTMV COMD

SMCAR-LCE I ATTN: DRSTA-RC

SMCAR-LCM (BLDG 321) 1 WARREN, MI 48090

SMCAR-LCS I
SMCAR-LCU I COMMANDER
SMCAR-LCW 1 US MILITARY ACADEMY

SMCAR-SCM-O (PLASTICS TECH 1 ATTN: CHMN, MECH ENGR DEPT
EVAL CTR, WEST POINT, NY 10996

BLDG. 351N)
SMCAR-TSS (STINFO) 2 US ARMY MISSILE COMD

DOVER, NJ 07801 REDSTONE SCIENTIFIC INFO CTR 2
ATTN: DOCUMENTS SECT, BLDG. 4484

DIRECTOR REDSTONE ARSENAL, AL 35898
BALLISTICS RESEARCH LABORATORY 1
ATTN: AMXBR-TSB-S (STINFO) COMMANDER

ABERDEEN PROVING GROUND, MD 21005 US ARMY FGN SCIENCE & TECH CTR
ATTN: DRXST-SD

MATERIEL SYSTEMS ANALYSIS ACTV 220 7TH STREET, N.E.
ATTN: DRXSY-MP 1 CHARLOTTESVILLE, VA 22901
ABERDEEN PROVING GROUND, MD 21005

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCA-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF NO. OF
COPIES COPIES

COMMANDER DIRECTOR
US AR:fY MATERIALS & MECHANICS US NAVAL RESEARCH LAB

RESEARCH CENTER 2 ATTN: DIR, MECH DIV 1
ATTN: TECH LIB - DRXMR-PL CODE 26-27, (DOC LIB) 1
WATERTOWN, MA 01272 WASHINGTON, D.C. 20375

COMMANDER COMMANDER
US ARMY RESEARCH OFFICE AIR FORCE ARMAMENT LABORATORY
ATTN: CHIEF, IPO 1 ATTN: AFATL/DLJ 1
P.O. BOX 12211 AFATL/DLJG 1
RESEARCH TRIANGLE PARK, NC 27709 EGLIN AFB, FL 32542

COMMANDER METALS & CERAMICS INFO CTR
US ARMY HARRY DIAMOND LAB BATTELLE COLUMBUS LAB 1
ATTN: TECH LIB 1 505 KING AVENUE
2800 POWDER MILL ROAD COLUMBUS, OH 43201
ADELPHIA, MD 20783

COMMANDER
NAVAL SURFACE WEAPONS CTR
ATTN: TECHNICAL LIBRARY I

CODE X212
DAHLGREN, VA 22448

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
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